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Admittance Matrix Formulation of Waveguide
Discontinuity Problems: Computer-Aided

Design of Branch Guide
Directional Couplers
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ROBERTO SORRENTINO, SENIOR MEMBER, IEEE

Abstracf —A computational scheme is proposed which can he applied

to the armfysis of cascaded wavegoide discontimdties of aftemating

bcmndary-erdargement and boundary-reduction type. Basedon the mode-
matching technique, the proposed procedure makes use of tke adsrdttance

matrix characterization of waveguide stubs. With respect to the conven-

tional S-matrix formulation, it leads to a notable reduction of the compu-

tational effort, particularly for Iossless stroctores. At the same time, the

criterion for avoiding relative convergence problems can be satisfied. The

procedure has been used to setup a very accorate and efficient computer-

aided design tool of branch guide couplers (BGC’S) T’hese are key ele-

ments of beam forming networks for multicontoured ‘beam satellite anten-

nas and ‘have to be designed with very high accuracy so as to efirnhate the

necessity for tuning the components reafized. Design accuracies better

than 0.1 dB in Ku-band are demonstrated by experimental results.

I. INTRODUCTION

I N RECENT YEARS, special effort has been devoted to

the development of high efficiency beam f&ning net-

works (BFN’s) for multicontoured beam spacecraft anten-

nas. Frequency reuse and multifunction antennas are re-

placing conventional spot beam antennas. As a result, the

antenna system has notably grown in complexity, cost, and

weight, and now has an important role in the definition of

the payload architectures.

The BFN represents the heart of the antenna system. It

has to generate the complex excitations necessary to shape

the radiation pattern. Key requirements are wide band

operation (up to 35 percent), high precision power division

(typically 0.5 dB in amplitude and 5° in phase), high

power capability (about 300 W CW), and reliable technol-

ogy for space environment. To comply with the above

requirements, the BFN makes use of branch guide direc-

tional couplers as elementary power dividers.
The BGC structure is schematically depicted in Fig. 1.

Two rectangular waveguides are coupled by N branch

guides connected along the broad walls. Additional de-

grees of freedom are obtained by allowing the main wave-
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Fig. 1. Schematic of the branch guide coupler.

guide sections between the branches to have different

heights, thus different impedances. These devices are ma-

chined with high precision milling tools and each compo-

nent is made of two symmetrical halves corresponding to a

cut in the middle of the broad waveguide wall. The two

pieces are screwed together and they are not sensitive to

contact imperfections because the cut is in the symmetry

plane.

Several branch guide couplers are employed to generate

the desired power division. They must be designed with

extremely high accuracy in order to keep the total error at

the output ports of the BFN below 0.5 dB.

Synthesis techniques of branch couplers by classical

network theory have attained very high standards (see, for

imtance [1]–[5]), but are based on lumped or transmission

line models that do not take into account parasitic effects

at the waveguide junctions. Even with the inclusion of

equivalent circuits of the discontinuities to compensate for

these phenomena [6], [7], all ~gher order mode effects are

not taken into account in an adequate way. As a result,

each branch guide coupler must still be tuned with screws

placed in appropriate locations in cv-der to achieve the

desired performance. Tuning screws not only require a

time-consuming experimental activity, but” also limit the

maximum power transmittable and can generate passive

intermodulation products.

These problems can be overcome by a very accurate

design technique which would eliminate the necessity for

tuning the components. Due to mathematical difficulties,
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it is not possible to include parasitic into a synthesis

procedure. The high design accuracy required in the

above-mentioned applications can only be obtained by

numerical techniques. Though design techniques based on

accurate field theoretical analyses have already been devel-
oped [8], one has also to bear in mind the computer

efficiency of the analysis algorithm. This is of basic impor-

tance in keeping the overall CPU time within acceptable

limits, since computer-aided design consists of a large

number of repeated computer analyses according to some

optimization strategy.

We have therefore first developed a field-theoretical

analysis of the BGC structure using a mode-matching

technique which accounts for most parasitic effects (ex-

cept losses, which, in any case, must be kept at very low

levels). At the same time, an efficient computational al-

gorithm, based on an admittance-matrix formulation, has

been set up.

The use of the admittance-matrix formulation for treat-

ing waveguide problems leads to several computational

advantages. First, when losses are not to be considered, it

allows the use of real instead of complex algebra. Second,

the admittance matrix by definition lends itself to the

characterization of two-port cavities with conducting walls.

No matrix inversion is required, in fact, to evaluate the

admittance matrix. This property can be used to obtain

notable computational advantages when the structure is

composed of alternating boundary-enlargement and

boundary reduction discontinuities. Finally, the admit-

tance matrix formulation is compatible with the criterion

for avoiding errors due to the relative convergence phe-

nomenon [10].

A computer-aided design tool of the branch guide cou-

pler has been finally obtained by associating the computer

analysis with an optimization routine. The experimental

results have shown an excellent agreement with the theory.

Computed values of the coupling show deviations less than

0.1 dB.

II. COMPUTATIONAL PROCEDURE

The BGC is usually modeled, in a first approximation,

as two main transmission lines connected by N series

branches. Such an oversimplified model leads to unaccept-

able discrepancies since it completely neglects any para-

sitic reactance due to the junction discontinuities. A more

accurate model, as proposed in [5], includes T-junction

equivalent circuits [9] to account for parasitic reactance.

Also, this model has been proved to yield excessive dis-

agreements with experimental results. It was found that

higher order modes excited at the junctions not only

contribute to reactive phenomena confined to the discon-

tinuity region, but also produce a coupling between ad-

j scent discontinuities. The T-junction equivalent circuit

representation cannot be. applied, as it is derived under the

condition of an isolated junction.

To achieve the high accuracy required, it is necessary to

develop a general analysis capable of accounting for all

parasitic phenomena associated with higher order modes.

..- electric/magnetic wall

-&!##f-m--m--,m--=-

b

Fig. 2. Reduced structure for anslysis.

As is usually done in the analysis of BGC’S, the 4-port

structure is first reduced to two 2-port structures by plac-

ing an electric or magnetic wall along the longitudinal

plane of symmetry. The reduced half-structures, which

correspond to odd- and even-mode excitations, respec-

tively, consist of a main waveguide loaded with N short-

or open-circuited stubs, as schematically indicated in Fig.

2. The following relations are used to compute the scatter-

ing parameters of the BGC frclm those of the reduced

structures:

where Sij are the BGC scattering parameters and sj,e”) are

those of the even (e) or odd (o) reduced structures. The

remaining scattering parameters of the BGC are found

from the above equations on the basis of reciprocity and

symmetry considerations.

With simple modifications, all the results for the odd

case can easily be extended to the even case. For brevity,

from now on we will concentrate on the odd reduced

structure. This structure can be regarded as the cascade of

H-plane steps separated ‘%y uniform rectangular wave-

guides. Boundary-reduction steps alternate’ with boundary-

enlargement steps. (In the even-mode case, waveguide sec-

tions with magnetic upper walls alternate with sections

having electrical upper walls.)

The analysis of cascaded waveguide discontinuities is

usually performed as follows. The generalized scattering

matrices of the individual discontinuities are first com-

puted by a mode-matching technique. The individual

scattering matrices are then processed together with those

of the uniform waveguide sections to get the overall char-

acterization of the entire structure. Such an approach has

been used extensively in the literature in a number of

applications, from the design of E-plane metal insert filters

[11] to the design of waveguide slot couplers [12], [13].

An alternative approach consists of using the transmis-

sion matrix representation. This approach has been shown

to be computationally more efficient [14] but has some

disadvantages. To be applicable, in fact, the T-matrix

formulation requires the same number of field expansion

terms to be retained at both sidm of the discontinuity. This

is in contrast with the criterion to avoid the relative

convergence problem [10]. It is well known that to ade-

quately represent the edge condition at the step so as to

avoid incorrect numerical solutions, the mode number

ratio must’ be as close as possible to the dimension ratio

[15]. In addition, numerical instabilities may easily arise
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Fig. 3. (a) Enlargement-type step discontinuity. (b) Cascaded enlarge-
ment/reduction step discontinuities.

when a large number of higher order modes are retained or

when the overall length of the uniform waveguide sections

becomes too large [14]. To alleviate the problems associ-

ated with the T-matrix formulation, a modified formula-

tion which combines the use of S- and T-matrix repre-

sentations, has been recently proposed [16]. A different

approach is proposed in this paper, which seems to be even

less expensive, as discussed later on.

A. Modal Analysis of Step Discontinuity

With the notation of Fig. 3(a), according to the mode-

matching technique, the transverse electric and magnetic

fields are expanded in terms of normal modes at

sides of the step discontinuity [9, p. 5]1

~tA = ~ V.A%A EA = XIaA!!nA

n n

~IB = ~ V.B%B fftB = XI. B!?.B

m m

n=l,2,. ... NA

rn=l,2,. ... NB.

the two

(1)

In (1) g.~ and ~.A are the transverse electric and mag-

netic field vectors of the n th (TE or TM) mocle of wave-

guide A. Similarly, gmB and ~mB are the transverse electric

and magnetic field vectors of the m th mode of waveguide
B. Explicit expressions for the above quantities are given

in Appendix I. As customary, vector field quantities are

orthonormalized over the waveguide cross section S, so

that

/
gnx~m. dS=(3nm (2)

s —

where 8. ~ is the Kronecker delta. The numbers of expan -

1To simplify the notation, ,no apparent distinction is made in (1)

between TE and TM fields. Square brackets are used for matrices;
boldface letters indicate arrays; and the underbar indicates vector quanti-
ties.

sion terms NA and NB in (1) have to be chosen in such a

way as to avoid the relative convergence phenomenon; i.e.

their ratio NA/NB must be as close as possible to bA/b~.

The boundary conditions for the E and H fields lead to

a system of equations which can be put in the following

form:

lA= [W]IB (3a)

VB=[W’]TVA (3b)

where lA, VA and IB, VB are arrays of dimensions NA and

NR whose elements are the expansion coefficients of the

transverse magnetic and electric fields (&~A, gflA, etc.) at

the two sides of the discontinuity.

[W] is a (NA X ND) matrix whose elements are given by

(4)

Explicit expressions for WRW,are given in Appendix II.

Index T stands for the transpose matrix.

Let us now observe that the boundary conditions at the

discontinuity have led to the two sets of equations (3a) and

(3b). This first set relates the currents at the narrow side A

of the discontinuity to those at the wide side B. The other

set relates the voltages at the wide side to those at the

narrow side. In order to compute the scattering matrix or

the transmission matrix representation of the discontinuity,

the voltage and currents in (3) must be first decomposed

into their incident and reflected components. It is then

seen that one matrix inversion must be performed to

compute either the scattering matrix S or the transmission

matrix T. An admittance matrix Y of the step, on the

contrary, cannot be defined.

B. Cascade of Two Discontinuities

In the case of two cascaded discontinuities, the conven-

tional S-matrix computational scheme requires one matrix

inversion for each discontinuity, plus one inversion to

compute the overall S matrix. The last inversion is not

necessary in the T-matrix approach, as it is replaced by

matrix multiplication. In any case, at least two matrix

inversions are required, one for each discontinuity.

We will show next that the computational effort can be

notably reduced if the cascaded discontinuities are first

of the boundary-enlargement type and second of the

boundary-reduction type.

With reference to Fig. 3(b), the equations for the second

step are

Ic= [W’]I; (5a)

v;= [w’]Tv c. (5b)

l; and Vi are the current and voltages of guide B at the

second step discontinuity. They can be related to those at

the first one using the telegraphists’ equations for the

normal modes of guide B. Using the admittance matrix

representation, we may write

IB = [YJ~)] VB+ [Yy] v;

Ii= [Yp] VB+ [YJ;)] Vj. (6)



ALESSANDRI et al.: ADMITTANCE MATRIX FORMULATION OF WAVEGUIDE DISCONTINUITY PROBLEMS
397

Because of the orthogonality of normal modes, the above

matrices [ ~.\BJ] are diagonal matrices. Their expressions are

quoted in Appendix III. Equations (3) and (5) can be

combined through (6) to compute the overall Y-matrix

representation of the cascade. One obtains

IA=[w]( [Yfp)][w]’vA+ [Yf;)][w’]’vc]

lc= [w’]{ [YJ/q[w]%A+[ Yg)][w]Tvc]. (7)

The procedure described has led to the admittance ma-

trix characterization of the cascaded discontinuities with

no matrix inuersion. Combining (3) and (5) to compute the

scattering matrix or the transmission matrix representation

of the cascaded discontinuities would require, on the con-

trary, one matrix inversion.

It is not surprising that the evaluation of the admittance

matrix of Fig. 3(b) require a reduced computational effort

compared with other matrix representations. The admit-

tance matrix, in fact, appears by definition as the “natural”

representation for cavities with ports realized on conduct-

ing walls. It could be easily seen that, when the first
discontinuity is of the boundary-reduction type and the
second one of the boundary-enlargement type, the imped-

ance matrix can be computed with no matrix inversion, so

it would be the most convenient representation. Grouping

discontinuities in this way, however, would lead to matrices

with larger dimensions since a higher number of modes has

to be retained at the wide side of the discontinuities.

In conclusion, the above results demonstrate that the

computational effort in the analysis of two cascaded dis-

continuities as in Fig. 3(b) — one boundary-enlargement

and one boundary-reduction type—is substantially re-

duced by:

1) Considering the two cascaded discontinuities as a

whole, i.e., as a 2-port structure. The matrix equations (3)

and (5) at the ports are manipulated together to evaluate

the overall matrix representation. One matrix inversion,

instead of two, is required. Such an approach, based on the

scattering matrix formulation, has been recently proposed

in [18].

2) Adopting the admittance matrix representation. This

permits the use of a real algebra and avoids any matrix

inversion.

C. BGC Computational Procedure

We consider now the analysis of alternating boundary-

enlargement and boundary-reduction discontinuities, as in

Fig. 2. On the basis of the results of the previous section,

to reduce the computational effort, boundary-enlargement

and boundary-reduction discontinuities are grouped to-

gether so that the structure is considered as the cascade of
N nonsymmetrical stubs separated by N – 1 uniform wave-

guide sections (see Fig. 4). We suppose that M, (i=

1,2,. . . , 2N – 1) is the number of modes retained in the ith

section. MO = ikfz~ are the number of modes in the feeding

waveguides.

With reference to Fig. 5, which shows the multiport

network representation of two stubs connected by a wave-

Fig. 4. Reduced structure of Fig. 2 as cascaded waveguide stubs.

ERzm
Fig. 5. Cascading admittance matrices.

TABLE I

CPU TrMEs USING S-MATRIX OR Y-MATRIX FORMULATIONS FOR

DIFFERENT NUMRERS OF MODAL EXPANSION TERMS IN THE

FEEDING WAVEGUIDES

3 Branch-line coupler

Number of modes 4 5 6

S-matrix 039.44 1 13“.75 2’6,20

Y-matrix O’ 8“.23 o’ 10’’.14 (Y lY.81

Time ratio 6.33 7.27 7,98

7 Branch-line coupler

Number of modes 4

a

5 6

S-matrix 1’ 10.14 2’21’.21 4’ 6“.5

Y-matrix U 12.87 0’24’’.26 042’’.10

Time ratio 5.44 5.82 5,89

Quoted values correspond to the analysis of BGC’S performed on a
MicroVax II at 17 frequency samples.

guide section, the computational procedure is as follows:

1) Compute the Y matrix [Y~SJ] of the first stub.

2) Compute the Y matrix [Y(g)] of the next waveguide

section.

3) Compute the Y matrix [Y’(s)] of the next stub.

4) Compute the Y matrix [Y] of the three cascaded

networks according to the following equations:

[y,,] = [1’lq+[YJ;)][QI

.([YJj)] +[Y(/*)])[Yff)] -l[Yj;)]

[Yn] = [YZI]T= -[ L$)][Q][Lfs)]

[Y221 = [y<}’)] + [Y#)] [Yff)] “

([ YJ;)]+[L! P])[Q][vJ’] (8)

with

[Q]={ w’)] – ([Y2Y] + [Y{,(’)] )

[Y{f)]-l([Y~;)] +[Y/j)]))-l (89
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Fig. 6. Comparison between theory and measurements of an experimental three-branch coupler.

Go to step 2) unless the overall Y matrix is com-

puted. After the first iteration, the Y matrix of the

previous stub [Y(’)] on the right-hand sides of (6) is

to be replaced by that of the structure computed in

the previous iteration.

Compute the scattring parameters of the structure

from the overall Y matrix resulting at the end of the

above procedure.

Remembering that [Y/~)] is a diagonal matrix, the se-
quence of steps 2) through 5) requires only one matrix

inversion to compute the Q matrix. This is done at step 4),

i.e., when one stub is cascaded, through the waveguide

interposed, to the remaining structure. The size of the

matrix to be inverted is Mi (i= 2,4,6,. ... 2N – 2), i being
the index of the waveguide section. The total number of

inversions is equal to the number of waveguide sections;

thus is N–1.

One additional inversion is required in step 6). The most

straightforward (not the most efficient) procedure consists

of computing the scattering matrix using the well-known

matrix relation with the admittance matrix. This requires a

matrix inversion of order 2 MO. This procedure can sub-

GHz

5 GHz

stantially be simplified to get additional computational

savings. For clarity of presentation, however, let us now

compare the computational procedure illustrated so far

with other, more conventional computational schemes.

Further computational aspects will be discussed in the

next section.

As stated above, the present procedure requires a num-

ber N of inversions equal to the number of stubs and uses

a real algebra.

The same technique of grouping boundary-reduction
with boundary-enlargement discontinuities using the S

matrix not only requires the use of complex numbers, but

also N additional inversions to compute the S matrices of

the stubs. Only the final inversion of step 6) is avoided, so

that the total number of matrix inversions is 2N – 1, the

sizes of the matrices to be inverted being M, (i =

2,4,6> . . . , 2N – 2) for the N – 1 waveguide sections and

(~t-l+J’f, +l)(i=l,3,5, ”” ., 2N – 1) for the N stubs. The

2This figure, as well as those given below, refers to the structure of Fig.
4, i.e., to one half of the entire BGC structure. The symmetry of the BGC,
which is usually present in practical structures, has not been taken into
account. It would reduce the number of inversions by about one half.
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1 L2 L4 3

g#+zl
L1-L3-L5

“y-” ~ ETA

t2 B1 B2 83
T

4
! ,

L////./////////////////////////////////////

COUPLER A COUPLER B COUPLER C
N=3 N=5 N=5

01 9.52 952 5715

B2 940 9.52 5715

B3 9.72 5.715

T 1286 12.60 9.321

L1 4.79 1.70 0747

L2 4.11 734 6251

L3 8.b8 3.40 1.938

L4 6.26 5.569

L5 453 2501

Fig. 7. Dimensions (in mm) of the branch guide couplers of Figs. 6, 9,
and 10; respectively. Connecting wavegnide width a = 19.05 mm in all
cases.

conventional S-matrix scheme, in which each discontinuity

is analyzed separately,’ requires 3N matrix inversions.

Transmission matrix computational schemes require at

least the same number of mati-ix inversions as the present

approach. The latter, however, requires a much lower

number of matrix multiplications. Taking into considera-

tion its higher flexibility in the choice of the number of

modes and the advantage of using a real algebra, the

admittance matrix formulation presented here seems

preferable over the transmission matrix approach.

We have finally developed two different computer pro-

grams using the Y-matrix and S-matrix formulations, both

based on the concept of grouped discontinuities. A reduc-

tion of the computer time by a factor of about 6 is

obtained with the Y-matrix formulation, as shown by the

figures quoted in Table I.

An example of the excellent accuracy which is obtained

is demonstrated in Fig. 6. The theoretical responses of an

experimental three-branch coupler are compared with the

measurements in the 10–15 GHz frequency band. The

coupler’s dimensions are given in Fig. 7 (coupler Al Only

six to nine modes are taken into account in the various

sections ~f the structure. The theory is fully capable of

predicting also the very sharp peaks due to higher mode

interaction between discontinuities.

III. ADDITIONAL NUMERICAL CONSIDERATIONS:

MATRIX REDUCTION AND

NUNIERICAL INSTABILITIES

Step 6), the final step of the computational procedure

described in the previous section, requires a matrix inver-

sion of order 2 M. to compute the generalized scattering

matrix from the generalized admittance matrix of the

reduced BGC structure of Fig. 4. This is by far more than

required. In all practical conditions, in fact, higjher order

modes on the terminating waveguide sections are evanes-

cent and do not interact with the external circuit. Only the

four scatering parameters associated with the fundamental

modes are to be considered, while the rest of the S matrix

is discarded.

Such a procedure, though straightforward, is clearly

redundant and computationally inefficient. Actually, it is

possible to carry out the entire computational procedure of

the previous section with reduced matrix sizes in such a

way that the resultant Y matrix of the structure is a 2 X 2

matrix involving only the dominant modes of the terminat-

ing waveguides.

Consider higher order modes excited at a discontinuity

that are attenuated in such a way t~t they do not produce

any interaction with other discontmuities. In a multiport

equivalent network representation of the. discontinuity, the

ports corresponding to such modes are terminated by their

characteristic impedances. These ]modes have been called

localized modes in contrast with the accessible modes [17].

The number of ports connected to the external circuit is

only that of the accessible modes, and the size of the

matrix representation of the network can be reduced corre-

spondingly.

After partitioning fie complete admittance matrix

according to the accessible (index a) and localized (index

1) modes:

the reduced admittance matrix is given by

[Yred] = [Yaa]-[Ya,]([Ijl] +diag[YC])-’[~a] (9)

where diag [ YC] is the diagonal matrix of the characteiisitc

admittances of the localized modes. Equation (9) involves

a matrix inversion of size M(l) equal to the number of

localized modes.

This matrix size reduction can he immediately app!ied at

step 1) to the Y matrix of the first stub. All higher order

modes on the left side (input waveguide) can be terminated

by their characteristic admittance so that, using (9), the

size of the Y matrix is reduced from M.+ Af2 {o only

1 + Mz. We can proceed similarly with the last Nth stub,

so that, at the end of the computational procedure, we end

up with a 2 x 2 instead of an &f. :X M. admittance matrix.

The computation of the final step 6) can now be per-

formed using direct formulas relative to 2-port networks.

The price to be paid involves the two iiwersions of order

M. – 1 to evaluate the reduced Y matrices of the terminal

stubs. This, however, is more corwenient, thap performing

one matrix inversion of order 2 Alo. One additional ad-

vantage is the size reduction of the matrices involved in the

computational procedure.
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Fig. 8. Multiport equivalent network representation of cascaded stub–

waveguide-stub with locafized higher order modes.

The characterization in terms of reduced Y matrix can

be advantageously applied also to the internal stubs. This

technique not only implies some computational reduction,

but also can avoid possible numerical instabilities. These

are somewhat related to the concept of localized modes.
It ‘has been pointed out that numerical instabilities may

arise in the transmission matrix representation of cascaded

waveguide discontinuities [14]. They occur when the over-

all length of the uniform waveguide sections is exceedingly

large compared to the attenuation distance of the highest

order mode.

In the admittance matrti formulation presented in this

paper, numerical instabilities have been occasionally ob-

served. They are due to the admittance matrix of a wave-

guide section interposed between two stubs. To be more

specific, numerical overflows or underflows are associated

with the product a~l, a~ being the attenuation constant of

the highest order mode (which is below cutoff) and 1 the

uniform waveguide length, i.e., the distance between the

discontinuities.

When the product a~l becomes excessively large, the

corresponding term cosech ( a~l) in [Y&J] (see Appendix

III) tends to zero and this matrix becomes singular. The

procedure expressed by (8) leads to numerical instabilities.

These are easily avoided using the reduced admittance

matrix of the stub. All the modes such that the product

a~l becomes too large are considered as localized modes

and are eliminated from the admittance matrix of the

waveguide. The computational procedure is still expressed

by (8), with the exception that the Y matrices of the stubs

are replaced by the corresponding reduced matrices. Fig. 8,

which replaces Fig. 5, shows the multiport equivalent

network representation of two stubs connected by a wave-

guide section. Localized modes appear as reactive loads of

the stub networks and do not enter into the wavegtiide
network representation.

For the sake of completeness, it is worth mentioning

that the Y-matrix representation, as most network repre-

sentations except the scattering matrix, possesses polar

singularities.
The poles of the Y matrix of a stub are the resonant

frequencies of the cavity obtained by short-circuiting the

two apertures. Since they are known in advance, numerical

problems can be avoided.

Additional singularities may arise in the computation of

the reduced admittance matrix (9) when die matrix to be

inverted becomes singular. This problem can be cir-

cumvented by cascading to the stub a short waveguide

length before computing the reduced matrix. This has the

effect of modifying the admittance matrix [ Yll] relative to

the localized modes so eliminating the singularity of [Y,l] +

diag[~,].
According to our experience, singularity problems occur

only in special cases. They may be encountered in some

structures when analysis is performed with an extremely

fine frequency step. The above-mentioned techniques to

circumvent numerical instabilities affect only to a very

small extent the computational effort.

IV. DESIGN PROCEDURE

The admittance matrix computational scheme described

in the previous section has been associated with an optimi-

zation routine so as to obtain a complete CAD tool of the

BGC.

The CAD procedure is as follows:

1)

2)

3)

It

From the requirements of the BGC, a first approxi-

mate design is performed according to well-known

procedures, such as, [3].

The response of the BGC is analyzed. Because of

discontinuity effects, the response is generally shifted

both in frequency and in amplitude.

To comply with the prescribed requirements an opti-

mization routine is finally applied. This routine uses

the gradient method to minimize the following error

function:

where summation is performed at 1 frequency sam-

ples. AC(i) is the difference between the nominal

and computed coupling values; bars indicate desired

tolerances. It was found that, in practical cases, 1 = 3

sample points is sufficient to characterize the re-

sponse in the entire band.

is worth observing that the optiniization procedure

requires a large number of BGC structures to be analyzed

at a limited number of fixed frequencies. As a conse-

quence, the singularity problems mentioned in the previous

section are never encountered iri practice, while, on the

other hand, it is very important to keep the computer

analysis within reasonable time limits. The complete opti-

mization procedure of a seven-branch. coupler takes about

15 minutes of CPU on a MicroVax II.

Fig. 9 shows the theoretical and experimental results of

a five-branch coupler designed to have a coupling C = 41

0.15 dB and an input reflection coefficient Islll is better

than 28 dB in the band 10.9–12.8 GHz, Dimensions of the

coupler, designated as coupler B, are quoted in Fig. 7. A

maximum discrepancy of 0.09 dB is found between theo-

retical and measured couplings. The BGC has been real-

ized using a standard WR75 waveguide.
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A reduced-height waveguide was used to design the
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g ~_\ ~ ~ ~;– ,

“k.. ~ id

~\ \ five-branch coupler (coupler C in Fig. 7) shown in Fig. 10.
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The WR 75 height was reduced by a factor of 0.6. This
$ 1’ Ml ,/: permits both a wei@ reduction and reduced coupling
% between discontinuities due to higher order modes. An

‘&k’’---” e fA%M

input reflection coefficient better ‘than 40 dB with a AC<

0.15 dB in the whole frequency band is demonstrated.

APPENDIX I
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FREQ GH2
For the reader’s convenience, the representation (1) of

Fig. 9. Theoretical and experimental responsesof an optimized five- the EM field in terms of the normal modes in a rectanguliy

branch coupler. waveguide section is detailed in this appendix.
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The transverse components of the electric and magnetic

fields are [9]

Et= ~ V& = ~ v;~)g$~) + ~ v;’)<:’) (Al)
n n n

~,= ~ V#n = ~Iy&) + ~IfVz:). (A2)
n n n

The H-field eigenvectors ~~ are related to the g. by

~n=~oxgn.

The latter are obtained from the H-mode or E-mode

potentials

~(e) = _ Vf+$). (A3)e(k) = 20 X Vt*J~) _.—n —

In the present case, because of the uniformity of the

structure in the x direction, the x dependence of the EM

field is determined by the incident field, which is assumed

to be the dominant HIO mode. The potentials in (A3)

therefore have the following expressions:

+:h) = P; fi)cos E ~os (n –:) ‘Y
a

+$) = Pie) sin z cos ~ (A4)
a

where, in order for the orthonormalization condition (2) to

be satisfied, the P coefficients are

with

(an= ; forn=l

forn#l
(A6)

k=m ‘A’)
a and b being the waveguide dimensions.

APPENDIX II

The elements of the W matrix given by (4) represent the

coupling between the modes in waveguides A and B occur-

ring at the discontinuity between the two waveguides. The

W matrix can be divided into the four submatrices [ W(hh)],

[W(h’)], [W(’h)], and [W(ee)]. We have, for instance,

W;:h) =
J

g;~ x ~:~.dS (A8)
SA

and similarly for the other submatrices.

Using the expressions given in Appendix I, one obtains

W(h,h) = p;:)p;$)k:-l A
nm

(1/6, for(n–1)R=m–1

h).;bA (–1)”
sinc[(nz-l)7r/R]

n–l 2

—R –1
m–1

W$>h) = ()

(1/2 for nR = m

m,n=l,2,3, . . . .
In the above expressions

sine(x) =sin(x)/x

with a the common waveguide width and R = b~ /b~ the

ratio between the waveguide heights.

APPENDIX III

The generalized admittance matrix of a waveguide sec-

tion of length f is given by

where the [~, ] are diagonal matrices or order M, M being

the number of modes retained in the waveguide section.

Matrix elements have different expressions depending on

whether an H or an E mode is considered.

H modes

= diag
[

– J%
— cotan ( ~ml )

UP 1
= diag

[“
- cotanh ( a~l )

up 1
[j~n I [“[Y12] = diag ~cosec(/3~1) = diag ‘~ cosech(a~l) 1

[Y22] = [Y,l] [Y2,1= [Y,21.

For E modes,

[“
[ Y,,]= diag ~ cotan (~nf )

n 1
=diag

[
‘X cotanh ( a~l )
an 1

[Yl,] = diag
[“
‘~ cosec ( ~.1 )

n ,1
=diag

[
m cosech ( a~l )

an 1
[Y22] = [Y,,] [Y,l] = [Y,2].
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Trigonometric or hyperbolic functions are used depending

on whether the mode is above or below cutoff, respec-

tively. Correspondingly, & and a. are the phase constant

and attenuation constant.
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