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Abstract — A computational scheme is proposed which can be applied
to the analysis of cascaded waveguide discontinuities of alternating
boundary-enlargement and boundary-reduction type. Based on the mode-
matching technique, the proposed procedure makes use of the admittance
matrix characterization of wavegmde stubs. With respect to thie conven-
tional §-matrix formulation, it leads to a notable reduction of the compu-
tational effort, particularly for lossless structures. At the same time, the
criterion for avoiding relative convergence problems can be satisfied. The
procedure has been used to set up a very accurate and efficient computer-
aided design tool of branch guide couplers (BGC’s) These are key -ele-
ments of beam forming networks for mulﬁcontouréd beam satellite anten-
nas and have to be designed with very high accuracy so as to eliminate the
necessity for tuning the components realized. Design accuracies' better
than 0.1 dB in Ka-band are demonstrated by experimental results.

I. INTRODUCTION

N RECENT YEARS, special effort has been devoted to

the dévelopment of high efficiency beam forming net-
works (BFN’s) for multicontoured beam spacecraft anten-
nas. Frequency reuse and multifunction antennas are re-
placing conventional spot beam antennas. As a result, the
antenna system has notably grown in complexity, cost, and
weight, and now has an important role in the definition of
the payload architectures.
- The BFN represents the heart of the antenna system. It
has to generate the complex excitations necessary to shape
the radiation pattern. Key requiréments are wide band
operation (up to 35 percent), high precision power division
(typically 0.5 dB in amplitude and 5° in phase), high
power capability (about 300 W CW), and reliable technol-
ogy for space environment. To comply with the above
requirements, the BFN makes use of branch guide direc-
tional couplers as elementary power dividers.

The BGC structure is schematically depicted in Fig. 1.
Two rectangular waveguides are coupled by N branch
guides connected along the broad walls. Additional de-
grees of freedom are obtained by allowing the main wave-
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Fig. 1. Schematic of the branch guide coupler.

guide sections between the branches to have different
heights, thus different impedances. These devices are ma-
chined with high precision milling tools and each compo-
nent is made of two symmetrical halves corresponding to a
cut in the middle of the broad waveguide wall. The two
pieces are screwed together and they are not sensitive to
contact imperfections because the cut is in the symmetry
plane.

Several branch gu1de couplers are employed to generate
the desired power division. They must be designed with
extremely high accuracy in order to keep the total error at
the output ports of the BFN below 0.5 dB.

Synthesis ‘techniques of branch couplers by classical
network theory have attained very high standards (see, for
instance [1]-[5]), but are based on lumped or transmission
line models that do not take into account parasitic effects
at the waveguide junctions. Even with the inclusion of
equivalent circuits of the discontinuities to compensate for
these phenomena [6], [7], all higher order mode effects are
not taken into account in an adequate way. As a result,
each branch guide coupler must still be tuned with screws
placed in appropriate locations in order to achieve the
desired performance.” Tuning screws not only require a
time—consuming experimental activity, but also limit the
maximum power transmittable and can generate passive
intermodulation products.

These problems can be overcome by a very accurate
design technique which would eliminate the necessity for
tuning the components. Due to mathematical difficulties,
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it is not possible to include parasitics into a synthesis
procedure. The high- design accuracy required in the
above-mentioned applications can only be obtained by
‘numerical techniques. Though design techniques based on
accurate field theoretical analyses have already been devel-
oped [8], one has also to bear in mind the computer

efficiency of the analysis algorithm. This is of basic impor-

tance in keeping the overall CPU time within acceptable
limits, since computer-aided design consists of a large
number of repeated computer analyses according to some
optimization strategy.

We have therefore first developed a- fleld theoretical
analysis of the BGC structure using a mode-matching
technique which accounts for most parasitics effects (ex-
cept losses, which, in any case, must be kept at very low
levels). At the same time, an efficient computational al-
gorithm, based on an admittance-matrix formulation, has
been set up.

The use of the admittance-matrix formulation for treat-
ing waveguide problems leads to several computational
advantages. First, when losses are not to be considered, it
allows the use of real instead of complex algebra. Second,
the admittance matrix by definition lends itself to the
characterization of two-port cavities with conducting walls.

No matrix inversion is required, in fact, to evaluate the

admittance matrix. This property can be used to obtain
notable computational advantages when the structure is
composed of alternating boundary-enlargement and
boundary reduction discontinuities. Finally, the admit-
tance matrix formulation is compatible with the criterion
for avoiding errors due to the relative convergence phe-
nomenon [10].

A computer-aided design tool of the branch guide cou-
pler has been finally obtained by associating the computer
analysis' with an optimization routine. The experimental
results have shown an excellent agreement with the theory.
Computed values of the coupling show deviations less than
0.1 dB.

II.  CoMPUTATIONAL PROCEDURE

The BGC is usually modeled, in a first approximation,
as two main transmission lines connected by N series
branches. Such an oversimplified model leads to unaccept-
able discrepancies since it completely neglects any para-
sitic reactances due to the junction discontinuities. A more
accurate model, as proposed in .[5], includes T-junction
equivalent circuits [9] to account for parasitic reactances.
Also, this model has been proved to yield excessive dis-
agreements with experimental results. It was found that
higher order modes excited at the junctions not only
contribute to reactive phenomena confined to the discon-
tinuity region, but also produce a coupling between ad-
jacent discontinuities. The T-junction equivalent circuit
representation cannot be applied, as it is derived under the
condition of an isolated junction.

To achieve the high accuracy required, it is nécessary to
develop a general analysis capable of accounting for all
parasitic phenomena associated with higher order modes.

- - - electric/magnetic wall

Fig. 2. Reduced structure for’ analysxs

As is usually done in the analysis of BGC’s, the 4-port
structure is first reduced to two 2-port structures by plac-
ing an electric or magnetic wall along the longitudinal
plane of symmetry. The reduced half-structures, which '
correspond to odd- and. even-mode excitations, respec-
tively, consist of a main waveguide loaded with N short-
or open-circuited stubs, as schematically indicated in Fig.
2. The following relations are used to compute the scatter-
ing parameters of the BGC from those of the reduced
structures:

Sy = (S(e) (0))/2 S12=(s(e)—s("))/2
su=(s+s5)/2  su (slg)—s("))/2
where s;; are the BGC scattering parameters and s{>* are

those of the even (e) or odd (o) reduced structures. The
remaining scattering parameters of the BGC are found
from the above equations on the basis of reciprocity and
symmetry considerations. ;

With simple modifications, all the results for the odd
case can easily be extended to the even case. For brevity,
from now on we will concentrate on the odd reduced
structure. This structure can be regarded as the cascade of
H-plane steps separated by uniform rectangular wave-
guides. Boundary-reduction steps alternate with boundary-
enlargement steps. (In the even-mode case, waveguide sec-
tions with magnetic upper walls alternate with sections
having electrical upper walls.) ‘

. The analysis of cascaded waveguide  discontinuities is

usually performed as follows. The generalized scattering

matrices of the individual discontinuities are first com-
puted by a mode-matching technique. The . individual
scattering matrices are then processed together with those
of the uniform waveguide sections to get the overall char-
acterization of the entire structure. Such an approach has
been used extensively in the literature in a number of
applications, from the design of E-plane metal insert filters
[11] to the design of waveguide slot couplers [12], [13].

An alternative ‘approach consists of using the transmis-
sion matrix representation. This approach has been shown
to be computationally more efficient [14] but has some
disadvantages. To be applicable, in fact, the T-matrix
formulation requires the same number of field expansion
terms to be retained at both sides of the discontinuity. This
is in contrast with the criterion to avoid the relative
convergence problem [10]. It is well known that to ade-
quately represent the edge condition at the step so as to
avoid incorrect numerical solutions, the mode number
ratio must be as close as possible to the dimension ratio
[15]. In addition, numerical instabilities may easily arise
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Fig. 3. (a) Enlargement-type step discontinuity. (b) Cascaded enlarge-

ment/reduction step discontinuities.

when a large number of higher order modes are retained or
when the overall length of the uniform waveguide sections
becomes too large [14]. To alleviate the problems associ-
ated with the 7-matrix formulation, a modified formula-
tion which combines the use of S- and T-matrix repre-
sentations, has been recently proposed [16]. A different
approach is proposed in this paper, which seems to be even
less expensive, as discussed later on.

A. Modal Analysis of Step Discontinuity

With the notation of Fig. 3(a), according to the mode-
matching technique, the transverse electric and magnetic
fields are expanded in terms of normal modes at the two
sides of the step discontinuity [9, p. 5]*

En= Z 98N H,, = ZInAhnA
n n

EtB = Z VmBgmB _HtB = ZImmaB
m m

l’l=1,2,' . "NA
m=1,2,-+-, Ny.

(1)

In (1) ¢, and k,, are the transverse electric and mag-
netic field vectors of the nth (TE or TM) mode of wave-
guide A. Similarly, e, ; and 4, are the transverse electric
and magnetic field vectors of the mth mode of waveguide
B. Explicit expressions for the above quantities are given
in Appendix I. As customary, vector field quantities are
orthonormalized over the waveguide cross section S, so
that

[e.xh,ds=3,, @)
i ds

where §,,, is the Kronecker delta. The numbers of expan-

1To simplify the notation, no apparent distinction is made in (1)
between TE and TM fields. Square brackets are used for matrices;
boldface letters indicate arrays; and the underbar indicates vector quanti-
ties.

sion terms N, and Ny in (1) have to be chosen in such a
way as to avoid the relative convergence phenomenon; i.e.
their ratio N, /Ny must be as close as possible to b, /by.

The boundary conditions for the £ and H fields lead to
a system of equations which can be put in the following

form:
I,= (W]l (3a)
Ve=[W1"v, (3b)

where I,,V, and Iy, Vy are arrays of dimensions N, and
Ny whose elements are the expansion coefficients of the
transverse magnetic and electric fields (4,4, €,4, €tC.) at
the two sides of the discontinuity.

[W1]is a (N, X Np) matrix whose elements are given by

I/Vnm = f €A X hmB'd_S' (4)
SA

Explicit expressions for W,, are given in Appendix IIL
Index T stands for the transpose matrix.

Let us now observe that the boundary conditions at the
discontinuity have led to the two sets of equations (3a) and
(3b). This first set relates the currents at the narrow side A
of the discontinuity to those at the wide side B. The other
set relates the voltages at the wide side to those at the
narrow side. In order to compute the scattering matrix or
the transmission matrix representation of the discontinuty,
the voltage and currents in (3) must be first decomposed
into their incident and reflected components. It is then
seen that one matrix inversion must be performed to
compute either the scattering matrix S or the transmission
matrix 7. An admittance matrix Y of the step, on the
contrary, cannot be defined.

B. Cascade of Two Discontinuities

In the case of two cascaded discontinuities, the conven-
tional S-matrix computational scheme requires one matrix
inversion for each discontinuity, plus one inversion to
compute the overall S matrix. The last inversion is not
necessary in the 7-matrix approach, as it is replaced by
matrix multiplication. In any case, at least two matrix
inversions are required, one for each discontinuity.

We will show next that the computational effort can be
notably reduced if the cascaded discontinuities are first
of the boundary-enlargement type and second of the
boundary-reduction type.

With reference to Fig. 3(b), the equations for the second

step are
Io=[w]Ig (52)
vg=[w]"v,. (5b)

I§ and Vy are the current and voltages of guide B at the
second step discontinuity. They can be related to those at
the first one using the telegraphists’ equations for the
normal modes of guide B. Using the admittance matrix
representation, we may write

Iy= [Yl(lB)] Ve + [YI(ZB)] Vg
I =[P vy + [Y @] v

(6)
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Because of the orthogonality of normal modes, the above
matrices [Y,{P] are diagonal matrices. Their expressions are
quoted in Appendlx II1. ‘Equations (3) and (5) can be
combined through (6) to compute the overall Y-matrix
representation of the cascade. One obtains

L=[wl{[v@]w1 v, + [y P][w]" V)
L= [w{ [y w1 v+ B2 W]V, ).

(7)

The procedure described has led to the admittance ma-
trix characterization of the cascaded discontinuities with
no matrix inversion. Combining (3) and (5) to compute the
scattering matrix or the transmission matrix representation
of the cascaded discontinuities would require, on the con-
trary, one matrix inversion.

It is not surprising that the evaluation of the admittance
matrix of Fig. 3(b) require a reduced computational effort
compared with other matrix representations. The admit-
tance matrix, in fact, appears by definition as the “natural”
representation for cavities with ports realized on conduct-
ing walls. It could be easily seen that, when the first
discontinuity is of the boundary-reduction type and the
second one of the boundary-enlargement type, the imped-
ance matrix can be computed with no matrix inversion, so
it would be the most convenient representation. Grouping
discontinuities in this way, however, would lead to matrices
with larger dimensions since a higher number of modes has
to be retained at the wide side of the discontinuities.

In conclusion, the above results demonstrate that the
computational effort in the analysis of two cascaded dis-
continuities as in Fig. 3(b)—one boundary-enlargement
and one boundary-reduction type—is substantially re-
duced by:

1) Considering the two cascaded discontinuities as a
whole, i.e., as a 2-port structure. The matrix equations (3)
and (5) at the ports are manipulated together to evaluate
the “overall matrix- representation. One matrix inversion,
instead of two, is required. Such an approach, based on the
scattering matrix formulation, has been recently proposed
in [18].

2) Adopting the admittance matrix representation. This
permits the use of a real algebra and avoids any matrix
inversion.

C. BGC Computational Procedure

We consider now the analysis of alternating boundary-
enlargement and boundary-reduction discontinuities, as in
Fig. 2. On the basis of the resuits of the previous section,
to reduce the computational effort, boundary-enlargement
and boundary-reduction discontinuities are grouped to-
gether so that the structure is considered as the cascade of
N nonsymmetrical stubs separated by N — 1 uniform wave-
guide sections (see Fig. 4). We suppose that M, (i=

1,2,:--,2N —1) is the number of modes retained in the ith
section. M, = M, ,, are the number of modes in the feeding
waveguides.

With reference to Fig. 5, which shows the multiport
network representation of two stubs connected by a wave-
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Fig. 4. Reduced structure of Fig. 2 as cascaded waveguide stubs.

= v®) [y @) (Y] =
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_ . stub | _ _| waveguide | _ | stub [ _

I I - =
Fig. 5. Cascading admittance matrices.

TABLEI
CPU TiMES USING S-MATRIX OR' Y-MATRIX FORMULATIONS FOR
DIFFERENT NUMBERS OF MODAL EXPANSION TERMS IN THE
FEEDING WAVEGUIDES

3 Branch-line coupler.

Number of modes 4 5 6
S-matrix 0" 39".44 1'13".75 2'6".20
Y-matrix . 0 6".23 0 10".14 0" 15".81

Time ratio 6.33 7:27 7.98

7 Branch-line coupler

Number of modes 4 5 6
S-matrix 110714 2 2121 4 g5
Y-matrix o' 12787 0 24".26 0' 42".10

Time ratio 5.44 582 5.89

Quoted values correspond to the analysis of BGC’s performed on a
MicroVax II at 17 frequency samples,

guide section, the compuational procedure is as follows:

1) Compute the Y matrix [Y'*)] of the first stub.

2) Compute the Y matrix [Y'®] of the next waveguide
section.

3) Compute the Y matrix [Y”)] of the next stub.

4) Compute the Y matrix [Y] of the three cascaded
networks according to the following equations:

(Y] = [¥]+[v9][0]
| (7] + [P rp] ]
,[le] [Y21] ““[Y(s)][Q][Yfz(s)]
[Y,]= [Yz’z(s)] + [Y2/1(s)l [Y1(2g)] -
(v ]+ v DIel [ 6] (®)
with
(1= {[ri]- ([0 + [15])

L] e+ [re])) " @)
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Fig. 6. Comparison between theory and measurements of an experimental three-branch coupler.

5) Go to step 2) unless the overall ¥ matrix is com-
puted. After the first iteration, the ¥ matrix of the
previous stub [Y ] on the right-hand sides of (6) is
to be replaced by that of the structure computed in
the previous iteration.

6) Compute the scattring parameters of the structure
from the overall Y matrix resulting at the end of the
above procedure.

Remembering that [Y{§'] is a diagonal matrix, the se-
quence of steps 2) through 5) requires only one matrix
inversion to compute the Q matrix. This is done at step 4),
i.e., when one stub is cascaded, through the waveguide
interposed, to the remaining structure. The size of the
matrix to be inverted is M, (i = 2,4,6,---,2N —2), i being
the index of the waveguide section. The total number of
inversions is equal to the number of waveguide sections;
thus is N —1.

One additional inversion is required in step 6). The most
straightforward (not the most efficient) procedure consists
of computing the scattering matrix using the well-known
matrix relation with the admittance matrix. This requires a
matrix inversion of order 2M,,. This procedure can sub-

stantially be simplified to get additional computational
savings. For clarity of presentation, however, let us now
compare the computational procedure illustrated so far
with other, more conventional computational schemes.
Further computational aspects will be discussed in the
next section.

As stated above, the present procedure requires a num-
ber N of inversions? equal to the number of stubs and uses
a real algebra.

The same technique of grouping boundary-reduction
with boundary-enlargement discontinuities using the §
matrix not only requires the use of complex numbers, but
also N additional inversions to compute the S matrices of
the stubs. Only the final inversion of step 6) is avoided, so
that the total number of matrix inversions is 2N —1, the
sizes of the matrices to be inverted being M, (i=
2,4,6,---,2N —2) for the N—1 waveguide sections and
(M,_+M,, ) (i=135,--,2N—1) for the N stubs. The

2This figure, as well as those given below, refers to the structure of Fig.
4, i.e., to one half of the entire BGC structure. The symmetry of the BGC,
which is usually present in practical structures, has not been taken into
account. It would reduce the number of inversions by about one half.
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Fig. 7. Dimensions (in mm) of the branch guide couplers of Figs. 6, 9,
and 10, respectively. Connecting waveguide width g =19.05 mm in all
cases. -

conventional S-matrix scheme, in which each discontinuity
is analyzed separately, requires 3N matrix inversions.

Transmission matrix computational schemes require at
least the same number of matrix inversions as the present
approach. The latter, however, requires a much lower
number of matrix multiplications. Taking into considera-
tion its higher flexibility in the choice of the number of
modes and the advantage of using a real algebra, the
admittance matrix formulation presented here seems
preferable over the transmission matrix approach.

We have finally developed two different computer pro-
grams using the Y-matrix and S-matrix formulations, both
based on the concept of grouped discontinuities. A reduc-
tion of the computer time by a factor of about 6 is
obtained with the Y-matrix formulation, as shown by the
figures quoted in Table I.

An example of the excellent accuracy which is obtained
is demonstrated in Fig. 6. The theoretical responses of an
experimental three-branch coupler are compared with the
measurements in the 10-15 GHz frequency band. The
coupler’s dimensions are given in Fig. 7 (coupler A). Only
six to nine modes are taken into account in the various
sections of the structure. The theory is fully capable of
predicting also the very sharp peaks due to higher mode
interaction between discontinuities.

III. ADDITIONAL NUMERICAL CONSIDERATIONS:
MATRIX REDUCTION AND
NUMERICAL INSTABILITIES

Step 6), the final step of the computational procedure
described in the previous section, requires a matrix inver-
sion of order 2M, to compute the generalized scattering

matrix from the generalized admittance matrix of the
reduced BGC structure of Fig. 4. This is by far more than
required. In all practical conditions, in fact, higher order
modes on the terminating waveguide sections are evanes-
cent and do not interact with the external circuit. Only the
four scatering parameters associated with the fundamental
modes are to be considered, while the rest of the § matrix
is discarded.

Such a procedure, though str;aightforward, is clearly
redundant and computationally inefficient. Actually, it is
possible to carry out the entire computational procedure of
the previous section with reduced matrix sizes in such a
way that the resultant Y matrix of the structure is a 2 X2
matrix involving only the dominant modes of the terminat-
ing waveguides.

Consider higher order modes excited at a discontinuity
that are attenuated in such a way that they do not produce
any interaction with other discontinuities. In a multiport
equivalent network representation of the.discontinuity, the
ports corresponding to such modes are terminated by their
characteristic impedances. These modes have been called
localized modes in contrast with the accessible modes [17].
The number of ports connected to the external circuit is
only that of the accessible modes, and the size of the
matrix representation of the network can be reduced corre-
spondingly.

After partitioning the complete admittance matrix
according to the accessible (index a) and localized (index
1) modes:

[Y]=

Y] (Y, 1]]

Y. ] Yl

the reduced admittance matrix is given by

[Yred] = [Yaa]_ [Yal]([Yll] +d1ag[Yc]) 1[},Ia] (9)
where diag[Y,] is the diagonal matrix of the characterisitc
admittances of the localized modes. Equation (9) involves
a matrix inversion of size M? equal to the number of
localized modes.

This matrix size reduction can be immediately applied at
step 1) to the Y matrix of the first stub. All higher order
modes on the left side (input waveguide) can be terminated
by their characteristic admittance so that, using (9), the
size of the Y matrix is reduced from M,+ M, to only
1+ M,. We can proceed similarly with the last N th stub,
so that, at the end of the computational procedure, we end
up with a 22 instead of an M, X M, admittance matrix.
The computation of the final step 6) can now be per-
formed usmg direct formulas relative to 2-port networks.

The price to be paid involves the two inversions of order
‘M, —1 to evaluate the reduced Y matrices of the terminal
stubs This, however, is more corvenient than performing
one matrix inversion of order 2M,. One additional ad-
vantage is the size reduction of the matrices involved in the
computational procedure. ‘
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Fig. 8. Multiport equivalent network representation of cascaded stub—
waveguide—stub with localized higher order modes.

The characterization in terms of reduced Y matrix can
be advantageously applied also to the internal stubs. This
technique not only implies some computational reduction,
but also can avoid possible numerical instabilities. These
are somewhat related to the concept of localized modes.

It has been pointed out that numerical instabilities may
arise in the transmission matrix representation of cascaded
waveguide discontinuities [14]. They occur when the over-
all length of the uniform waveguide sections is exceedingly
large compared to the attenuation distance of the highest
order mode.

In the admittance matrix formulation presented in this
paper, numerical instabilities have been occasionally ob-
served. They are due to the admittance matrix of a wave-
guide section interposed between two stubs. To be more
specific, numerical overflows or underflows are associated
with the product a,l, ay being the attenuation constant of
the highest order mode (which is below cutoff) and / the
uniform waveguide length, i.e., the distance between the
discontinuities.

When the product a,/ becomes excessively large, the
corresponding term cosech(ay/) in [Y$] (see Appendix
III) tends to zero and this matrix becomes singular. The
procedure expressed by (8) leads to numerical instabilities.

These are easily avoided using the reduced admittance
matrix of the stub. All the modes such that the product
ay! becomes too large are considered as localized modes
and are eliminated from the admittance matrix of the
waveguide. The computational procedure is still expressed
by (8), with the exception that the Y matrices of the stubs
are replaced by the corresponding reduced matrices. Fig. 8,
which replaces Fig. 5, shows the multiport equivalent
network representation of two stubs corinected by a wave-
guide section. Localized modes appear as reactive loads of
the stub networks and do not enter into the waveguide
network representation.

For the sake of completeness, it is worth mentioning
that the Y-matrix representation, as most network repre-
sentations except the scattering matrix, possesses polar
singularities.

The poles of the Y matrix of a stub are the resonant
frequencies of the cavity obtained by short-circuiting the
two apertures. Since they are known in advance, numerical
problems can be avoided.

Additional singularities may arise in the computation of
the reduced admittance matrix (9) when the matrix to be

inverted becomes singular. This problem can be cir-
cumvented by cascading to the stub a short waveguide
length before computing the reduced matrix. This has the
effect of modifying the admittance matrix [Y,] relative to
the localized modes so eliminating the singularity of [Y},]+
diag[Y,].

According to our experience, singularity problems occur
only in special cases. They may be encountered in some
structures when analysis is performed with an extremely
fine frequency step. The above-mentioned techniques to
circumvent numerical instabilities affect only to a very
small extent the computational effort.

IV. DESIGN PROCEDURE

The admittance matrix computational scheme described
in the previous section has been associated with an optimi-
zation routine so as to obtain a complete CAD tool of the
BGC.

The CAD procedure is as follows:

1) From the requirements of the BGC, a first approxi-
mate design is performed according to well-known
procedures, such as, [3].

2) The response of the BGC is analyzed. Because of
discontinuity effects, the response is generally shifted
both in frequency and in amplitude.

3) To comply with the prescribed requirements an opti-
mization routine is finally applied. This routine uses
the gradient method to minimize the following error
function:

. [Ac(i)]2+ &

1=1 ZE z=1|S11(i)|2

|53,/ L Bl
+ X

2
=1 |512(1)|

where summation is performed at / frequency sam-
ples. AC(i) is the difference between the nominal
and computed coupling values; bars indicate desired
tolerances. It was found that, in practical cases, / =3
sample points is sufficient to characterize the re-
sponse in the entire band.

It is worth observing that the optimization procedure
requires a large number of BGC structures to be analyzed
at a limited number of fixed frequencies. As a conse-
quence, the singularity problems mentioned in the previous
section are never encountered in practice, while, on the
other hand, it is very important to keep the computer
analysis within reasonable time limits. The complete opti-
mization pracedure of a seven-branch. coupler takes about
15 minutes of CPU on a MicroVax II.

Fig. 9 shows the theoretical and experimental results of
a five-branch coupler designed to have a coupling C =4+
0.15 dB and an input reflection coefficient |s,| is better
than 28 dB in the band 10.9-12.8 GHz. Dimensions of the
coupler, designated as coupler B, are quoted in Fig. 7. A
maximum discrepancy of 0.09 dB is found between theo-
retical and measured couplings. The BGC has been real-
ized using a standard WR75 waveguide.
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Fig. 9. Theoretical and experimental responses of an optimized five-
branch coupler.
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Fig. 10. Theoretical response of an optimized five-branch coupler in
reduced-height waveguide.

A reduced-height waveguide was used to design the
five-branch coupler (coupler C in Fig. 7) shown in Fig. 10.
The WR 75 height was reduced by a factor of 0.6. This
permits both a weight reduction and reduced coupling
between discontinuities due to higher order modes. An
input reflection coefficient better than 40 dB with a AC <
0.15 dB in the whole frequency band is demonstrated.

APPENDIX |

For the reader’s convenience, the representation (1) of
the EM field in terms of the normal modes in a rectangular
waveguide section is detailed in this appendix.
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The transverse components of the electric and magnetic
fields are [9]

=T Ve, = LV e+ TV0e? (A1)
n n n
H= Y Vb, = LIORD + TIOKD.  (A2)

The H-field eigenvectors 4, are related to the e, by

hn=goxgn‘

The latter are obtained from the H-mode or E-mode
potentials

e =zoX VAP e?=-vy.  (A3)
In the present case, because of the uniformity of the
structure in the x direction, the x dependence of the EM
field is determined by the incident field, which is assumed
to be the dominant H;, mode. The potentials in (A3)
therefore have the following expressions:

TX n—1)=
Y = PM cos — cos (n=Dmy
a b
7x N7
P& = P{)sin — cos _by— (A4)
a

where, in order for the orthonormalization condition (2) to
be satisfied, the P coefficients are

PO _ 28, 1 Pl 2 1 (AS)
NV w k,, " Vab k,
with
{1 forn=1
%, = {2 forn+1 (A6)
X ('n' 2 nw\?2 A
= — + R
" a) ( b ) (A7)

a and b being the waveguide dimensions.

APPENDIX [I

The elements of the W matrix given by (4) represent the
coupling between the modes in waveguides A and B occur-
ring at the discontinuity between the two waveguides. The
W matrix can be divided into the four submatrices [ *")],
(W [W ], and [W©]. We have, for instance,

Wi = fs e{ X hil)-ds
'A

(A8)

and similarly for the other submatrices.

Using the expressions given in Appendix I, one obtains
Wi = PPk, 1

for(n—1)R=m-1
,sinc[(m —1)m/R]

n—lR 2 .
(m——l

1/8,

bl (<1)

T
Wit = PRPR(~1)"~ sin(mn/R)

wieh =
o 1/2  fornR=m
. a | nR .41 Sinc(ma/R)
W )=Pn(A)PrSIB)k3BEbA ;(_1) R \2
]
m
m,n=1,23-.-.

In the above expressions
sinc(x) =sin(x)/x

with a the common waveguide width and R = by /b, the
ratio between the waveguide heights.

APPENDIX II1

The generalized admittance matrix of a waveguide sec-
tion of length / is given by

_ [Yu] [Y]
[Y]‘[[m [Yzzl]

where the [, ] are diagonal matrices or order M, M being
the number of modes retained in the waveguide section.
Matrix elements have different expressions depending on
whether an H or an E mode is considered.

For H modes

[Y,,] = diag — cotan(,B,,l)]
| wp
_a,
= diag cotanh(a,l)
. [ B, . [Jje,
[Y,,] = diag | —cosec(B,/) | = diag | — cosech(a,/)
| wp wp
[Yzz]:[Yu] [Y2]=[Y12].
For E modes, i
— jwe
[Y1;:] = diag cotan(Bnl)]

n

[ jwe
= diag | — cotanh(a,/)
a

[ jwe
[Y,,] = diag 3 cosec(,B,,l)]
. ( — jwe | ]
= diag cosech(a,l)
[Yz ]Z[Yu] [Yzl]:[Yu]-
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Trigonometric or hyperbolic functions are used depending
on whether the mode is above or below cutoff, respec-
tively. Correspondingly, B, and a, are the phase constant
and attenuation constant.
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